

POWER CONVERSION SYSTEMS FOR **HYDROGEN PRODUCTION**

OVERVIEW

Hydrogen as a kind of Energy Storage Energy storage by Hydrogen production through electrolysis process, offer a promising synergy with non predictable energy source (renewable energy as solar, wind etc...).

Hydrogen as a fully Green Energy Vector

Hydrogen is 100% Green compliance

- · No need for waste disposal
- No pollution due to its use (no greenhouse gases)

TECHNOLOGY

Power rate from 1 to 3 MW with high power density for large scale production

Modular PCS with Insulated Gate Bipolar Transistors (IGBT) and low harmonics content.

Scalable rectifier for all the environment conditions.

CE equipment labelled included all relevant IEC and IEEE Standards

APPLICATIONS

- Automotive
- Refuelling station
- Power to Gas Energy Storage Converting surplus renewable energy into hydrogen gas by rapid response electrolysis and its subsequent injection into the gas distribution network
- Electric power generation fuel cells
- · Renewable Chemistry
- H2 as fundamental chemical block for a variety of commodity chemicals and fuels (ammonia, synthetic methane etc...
- Thermal power generation
- Steam turbine

TECHNICAL DATA

Installation	Outdoor
Storage Temperature	-20°C to +55°C
Operational Temperature	-20°C to +40°C1
Relative Humidity	< 95% (not condensing)
Altitude above the sea level	< 1.000 m
IP Rating	IP54
INPUT ELECTRICAL DATA	
Input Frequency	50/60 Hz
Input Voltage	300 to 900 V
Auxiliary Voltage	400 V
Power factor	>0,99
THDi	<2%1
OUTPUT ELECTRICAL DATA	
Voltage range	From 500 to 1500 Vdc
Max. Current	2000A
Current Ripple	<2 %²
Max Efficiency	98,6 %
DIMENSIONS AND CHARACTERISTICS	
Mechanical configuration	Enclosure
LxPxH(mm)	3150 x 1100 x 2300 mm
Approx. mass (kg)	3200 kg
CONTROLS	
Voltage	Digital Limit control
Current	Digital control
Communication	Modbus TCP, Profinet, Ethernet IP

 $^{^1}Derating$ for temperature > 40°C 1Considering upstream grid Psc =250 MVA and referred to PSU Nominal Power 2Considering current load from 8 % to 100 %